view 与 vision 用法上有什么区别?
这个问题我会,虽然本人英语口语不是很好,但是对英语四六级词汇还是很熟悉的~给大家总结了一个表格可以先粗略看一下:
含义解释
1、view 英[vju?] 美[vju?]?
n. 看法; 看; 视野; (个人的)意见; 见解; 态度; (理解或思维的)方法; 方式; 视域; 视线; (从某处看到的)景色,风景; 风景照; (一次)观看;
vt. 看; 把…视为; 以…看待; (尤指)仔细察看; 查看(房子等,以便购买或租用); 看,观看(电视、**等);
2、vision 英[?vn] 美[?vn]?
n. 视力; 视野; 想象; 幻象; 梦幻; 神示; 异象; 想象力; 俊男; 影像,画面;
v. 在梦(幻)中看见;想像;
相同点:都可以表示视野
不同点:view侧重于指从高处看到的画面和景致。vision侧重于强调的是你看清楚眼前事物的能力,指人的视力或视野,也可指远见卓识。
用法区别
view的基本意思是“看”“观察”,指看见展现在人们面前的、可以稳定地进行详细审视的事物,尤指需用某种方式或特殊目的来看待思考的事物。view是及物动词,接名词作宾语,还可接以as短语充当补足语的复合宾语。可用于被动结构。
vision基本意思是视力,视觉,指看清楚眼前事物的能力。
典型例句
view的例句
The valley was hidden from view in the mist.
溪谷隐没在雾霭之中,看不见了。
His view of life is different from yours.
他的人生观与你的不同。
I enjoy the view of the bay in the starlight.
我喜欢星光下的海湾风景。
vision的例句
I've had my eyes tested and the report says that my vision is perfect.
我去检查眼睛,根据报告我视力极佳。
A mental vision of success would help produce real success.
头脑中成功的想象会有助于取得实际的成功。
She had a vision in which God seemed to appear before her.
她在幻觉中看到上帝似乎出现在她眼前。
SVM的原理是什么?
SVM是一种二类分类模型。它的基本模型是在特征空间中寻找间隔最大化的分离超平面的线性分类器。(间隔最大是它有别于感知机)
(1)当训练样本线性可分时,通过硬间隔最大化,学习一个线性分类器,即线性可分支持向量机;
(2)当训练数据近似线性可分时,引入松弛变量,通过软间隔最大化,学习一个线性分类器,即线性支持向量机;
(3)当训练数据线性不可分时,通过使用核技巧及软间隔最大化,学习非线性支持向量机。
注:以上各SVM的数学推导应该熟悉: 硬间隔最大化(几何间隔)---学习的对偶问题---软间隔最大化(引入松弛变量)---非线性支持向量机(核技巧)。
SVM为什么采用间隔最大化?
当训练数据线性可分时,存在无穷个分离超平面可以将两类数据正确分开。
感知机利用误分类最小策略,求得分离超平面,不过此时的解有无穷多个。
线性可分支持向量机 利用间隔最大化求得最优分离超平面 ,这时,解是唯一的。另一方面,此时的分隔超平面所产生的分类结果是 最鲁棒 的,对未知实例的 泛化能力最强 。
然后应该借此阐述,几何间隔,函数间隔,及从函数间隔—>求解最小化1/2 ||w||^2 时的w和b。即线性可分支持向量机学习 算法 —最大间隔法的由来。
为什么要将求解SVM的原始问题转换为其对偶问题?
一、是对偶问题往往更易求解(当我们寻找约束存在时的最优点的时候,约束的存在虽然减小了需要搜寻的范围,但是却使问题变得更加复杂。为了使问题变得易于处理,我们的方法是 把目标函数和约束全部融入一个新的函数,即拉格朗日函数,再通过这个函数来寻找最优点。 )
二、自然引入核函数,进而推广到非线性分类问题。
为什么SVM要引入核函数?
当样本在原始空间线性不可分时,可将样本从原始空间映射到一个更高维的特征空间,使得样本在这个特征空间内线性可分。
引入映射后的对偶问题:
在学习预测中,只定义核函数 K ( x , y ),而不是显式的定义映射函数 ? 。因为 特征空间维数可能很高,甚至可能是无穷维,因此直接计算 ? ( x )· ? ( y )是比较困难的。 相反,直接计算 K ( x , y )比较容易(即直接在原来的低维空间中进行计算,而不需要显式地写出映射后的结果)。
核函数的定义: K ( x , y )=,即在特征空间的内积等于它们在原始样本空间中通过核函数K计算的结果。
除了 SVM 之外,任何将计算表示为数据点的内积的方法,都可以使用核方法进行非线性扩展。
svm RBF核函数的具体公式?
Gauss径向基函数则是局部性强的核函数,其外推能力随着参数σ的增大而减弱。
这个核会将原始空间映射为无穷维空间。不过,如果 σ 选得很大的话,高次特征上的权重实际上衰减得非常快,所以实际上(数值上近似一下)相当于一个低维的子空间;反过来,如果 σ 选得很小,则可以将任意的数据映射为线性可分——当然,这并不一定是好事,因为随之而来的可能是非常严重的过拟合问题。不过,总的来说,通过调控参数 σ , 高斯核实际上具有相当高的灵活性,也是使用最广泛的核函数之一。
为什么SVM对缺失数据敏感?
这里说的缺失数据是指缺失某些特征数据,向量数据不完整。SVM没有处理缺失值的策略(决策树有)。而SVM希望样本在特征空间中线性可分,所以特征空间的好坏对SVM的性能很重要。缺失特征数据将影响训练结果的好坏。
SVM是用的是哪个库?Sklearn/libsvm中的SVM都有什么参数可以调节?
用的是sklearn实现的。采用sklearn.svm.SVC设置的参数。本身这个函数也是基于libsvm实现的(PS: libsvm中的二次规划问题的解决算法是SMO)。
SVC函数的训练时间是随训练样本平方级增长,所以不适合超过10000的样本。
对于多分类问题,SVC采用的是one-vs-one投票机制,需要两两类别建立分类器,训练时间可能比较长。
sklearn.svm.SVC( C=1.0 , kernel='rbf' , degree=3 , gamma='auto' , coef0=0.0 , shrinking=True , probability=False , tol=0.001 , cache_size=200 , class_weight=None , verbose=False , max_iter=-1 , decision_function_shape=None , random_state=None )
参数:
l? C:C-SVC的惩罚参数C?默认值是1.0
C越大,相当于惩罚松弛变量,希望松弛变量接近0,即对误分类的惩罚增大,趋向于对训练集全分对的情况,这样对训练集 测试 时准确率很高,但泛化能力弱。C值小,对误分类的惩罚减小,允许容错,将他们当成噪声点,泛化能力较强。
l kernel :核函数,默认是rbf,可以是‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’
0 – 线性:u'v
1 – 多项式:(gamma*u'*v + coef0)^degree
2 – RBF函数:exp(-gamma|u-v|^2)
3 –sigmoid:tanh(gamma*u'*v + coef0)
l degree :多项式poly函数的维度,默认是3,选择其他核函数时会被忽略。
l gamma :?‘rbf’,‘poly’ 和‘sigmoid’的核函数参数。默认是’auto’,则会选择1/n_features
l coef0 :核函数的常数项。对于‘poly’和 ‘sigmoid’有用。
l probability: 是否采用概率估计?.默认为False
l shrinking :是否采用shrinking heuristic方法,默认为true
l tol: 停止训练的误差值大小,默认为1e-3
l cache_size :核函数cache缓存大小,默认为200
l class_weight :类别的权重,字典形式传递。设置第几类的参数C为weight*C(C-SVC中的C)
l verbose :允许冗余输出?
l max_iter :最大迭代次数。-1为无限制。
l decision_function_shape :‘ovo’, ‘ovr’ or None, default=None3
l random_state :数据洗牌时的种子值,int值
主要调节的参数有:C、kernel、degree、gamma、coef0。
SVM如何处理多分类问题?
一般有两种做法:一种是直接法,直接在目标函数上修改,将多个分类面的参数求解合并到一个最优化问题里面。看似简单但是计算量却非常的大。
另外一种做法是间接法:对训练器进行组合。其中比较典型的有 一对一 ,和 一对多 。
一对多,就是对每个类都训练出一个分类器,由svm是二分类,所以将此而分类器的两类设定为目标类为一类,其余类为另外一类。这样针对k个类可以训练出k个分类器,当有一个新的样本来的时候,用这k个分类器来测试,那个分类器的概率高,那么这个样本就属于哪一类。这种方法效果不太好,bias比较高。
svm一对一法(one-vs-one),针对任意两个类训练出一个分类器,如果有k类,一共训练出C(2,k) 个分类器,这样当有一个新的样本要来的时候,用这C(2,k)?个分类器来测试,每当被判定属于某一类的时候,该类就加一,最后票数最多的类别被认定为该样本的类。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!