python特征生成是什么?
python特征生成是什么?
业内常说数据决定了模型效果的上限,机械学习算法通过数据特征进行预测,良好的特征可以显着提高模型效果。这意味着通过特征生成(即从数据设计中加工模型的可用特征)是特征工程的重要一步。
一、特征生成作用
1、增加特征的表达能力,提升模型效果;
(如体重除以身高就是表达健康情况的重要特征,而单纯看身高或体重对健康情况表达就有限。)
2、可以融入业务上的理解设计特征,增加模型的可解释性。
二、特征生成方法
1、聚合方式
对存在一对多的字段,将其对应多条记录分组聚合后统计平均值、计数、值等数据特征。
#自定义分组聚合统计函数
defx2_sum(group):
returnsum(group**2)
df.groupby('cust_no').C1.apply(x2_sum)
2、转换方式
对字段间做加减乘除等运算生成数据特征的过程,对不同字段类型有不同转换方式。
以上就是python特征生成是什么,希望能对大家有所帮助,更多Python学习教程请关注IT培训机构:开发教育。
内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)