百科狗-知识改变命运!

多元线性回归与一元线性回归有何不同

是丫丫呀2年前 (2023-12-16)阅读数 11#综合百科
文章标签线性变量

一元线性是说一个解释变量对被解释变量的影响.多元线性则是多个解释变量对被解释变量的影响.计算一元线性回归方程的最小二乘法是整个回归思想中的核心.在多元线性回归方程中,由于变量的增多,最普遍的会出现异方差性,还会有时序性等影响着回归方程的拟合度,所以这里还要做逐步回归去剔除变量,这就要用到一元线性回归方程.现在我们也可以通过SPSS和Eviews等软件来计算这些.

望采纳

线性回归分析和指数回归分析有什么区别,如何使用

ols回归和线性回归的区别:含义不同,概念不同。

一、含义不同:

线性回归是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一,应用十分广泛。回归方程是根据样本资料通过回归分析所得到的反映一个变量(因变量)对另一个或一组变量(自变量)的回归关系的数学表达式。

二、概念不同:

在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。不太一般的情况,线性回归模型可以是一个中位数或一些其他的给定X的条件下y的条件分布的分位数作为X的线性函数表示。像所有形式的回归分析一样,线性回归也把焦点放在给定X值的y的条件概率分布,而不是X和y的联合概率分布(多元分析领域)。

在线性回归中

数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。

不太一般的情况,线性回归模型可以是一个中位数或一些其他的给定X的条件下y的条件分布的分位数作为X的线性函数表示。像所有形式的回归分析一样,线性回归也把焦点放在给定X值的y的条件概率分布,而不是X和y的联合概率分布(多元分析领域)。

线性回归分析和指数回归分析其实理论基础是一样的,基本没有区别。回归模型一个是直线,一个是指数曲线,简单地说数据点画出来象直线就用线性回归。

多元线性回归与一元线性回归有何不同

相关系数与回归系数的方向,即符号相同。回归系数与相关系数的正负号都有两变量离均差积之和的符号业决定,所以同一资料的b与其r的符号相同。回归系数有单位,形式为(应变量单位/自变量单位)相关系数没有单位。相关系数的范围在-1~+1之间,而回归系数没有这种限制。

基本含义

在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。(这反过来又应当由多个相关的因变量预测的多元线性回归区别,而不是一个单一的标量变量)。

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)
{if $zbp->Config('yd1125')->foot}