Python:使用pandas和numpy计算标准差的区别
首先,普及一下pandas与numpy的区别:
pandas操作的数据集是Series,本质上是列表与字典的混合,常用的数据形式为DataFrame;
numpy操作的数据集是数组或矩阵。
1、对数组求均值、方差、标准差
2、对矩阵求标准差
注意:在求标准差时需要注意几个问题:
1、在统计学中,标准差分为两种:
(1)总体标准差:标准差公式根号内除以n,是有偏的。
(2)样本标准差:标准差公式根号内除以n-1,是无偏的。
2、pandas与numpy在计算标准差时的区别
(1)numpy
?在numpy中计算标准差时,括号内要指定ddof的值,ddof表示自由度,当ddof=0时计算的是总体标准差;当ddof=1时计算的是样本标准差,当不为ddof设置值时,其默认为总体标准差。
(2)pandas
?在使用pandas计算标准差时,其与numpy的默认情况是相反的,在默认情况下,pandas计算的标准差为样本标准差。
python里面的列表用list表示,它非常类似我们js中的数组,使用中括号来表示。
例如 list3 = ["a", "b", "c", "d"]
python中默认没有提供数组类型,不过有个元组类型,它类似列表,但是不能修改。
tup1 = ('physics', 'chemistry', 1997, 2000)
在python中有个numpy包,它里面提供了数组array
import numpy as np
print(np.array([2,3,4]))
内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)