函数在x处有定义.极限存在和连续这三个概念之间的关系
1、函数在某点可导,是指在该点的左右导数存在并相等.
闭区间的左端点是否存在左极限,右端点是否存在右极限,不得而知.
所以,只能要求在闭区间内可导.
2、闭区间内连续、开区间内可导,就是保证函数在闭区间内部处处可导.
左端点的右导数,右端点的左导数,是否存在,是否需要考虑,由具体条件确定.
3、这种边界条件,在科学中非常多,如带电体的电荷分布,任何物体的质量分布等.
所以,这种情况,并不是凭空想象,而是由科学中的众多具体模型所决定的.
4、在科学模型中,这种边界突变的情形,会导致奇点(Singular)的出现,需要用特别
的数学方法处理.
在该点有定义是指在该点有函数值,在该点连续是指lim(x->a)f(x)=f(a),这是函数连续充要条件.
例如,f(x)=x^2,(x≠0),则在0点处无定义;但在0点左右两边都连续,图像为顶点为空心的抛物线,
故这两者并不矛盾.
内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)