百科狗-知识改变命运!

基数怎么解释?

一语惊醒梦中人2年前 (2023-12-23)阅读数 22#综合百科
文章标签基数序数

在数学上,基数(cardinal number)也叫势(cardinality),指集合论中刻画任意集合所含元素数量多少的一个概念。两个能够建立元素间一一对应的集合称为互相对等集合。例如3个人的集合和3匹马的集合可以建立一 一对应,是两个对等的集合。根据对等这种关系对集合进行分类,凡是互相对等的集合就划入同一类。这样,每一个集合都被划入了某一类 。任意一个集合A所属的类就称为集合A的基数,记作(或|A|,或cardA)。这样,当A 与B同属一个类时,A与B 就有相同的基数,即。而当 A与B不同属一个类时,它们的基数也不同。即。 如果把单元素集的基数记作1,两个元素的集合的基数记作2,等等,则任一个有限集的基数就与通常意义下的自然数一致 。空集?的基数也记作σ 。于是有限集的基数也就是传统概念下的“个数”。但是,对于无穷集,传统概念没有个数,而按基数概念,无穷集也有基数,例如,任一可数集(也称可列集)与自然数集N有相同的基数,即所有可数集是等基数集。不但如此,还可以证明实数集R与可数集的基数不同,即。所以集合的基数是个数概念的推广。基数可以比较大小。假设A,B的基数分别是a,β,即=a,=β,如果A与B的某个子集对等,就称 A 的基数不大于B的基数,记作a≤β,或β≥a。如果 a≤ β,但a≠β( 即A与B不对等 ),就称A的基数小于B的基数,记作a<β,或β>a。基数可以进行运算 。设=a ,=β,且 A∩B=,则规定为a 与β之和记作=a +β。设=a,=β,A×B为 A与B的积集,规定为 a 与β的积,记作=a·β。

基数是一种特殊的序数。把序数按等势关系归划,每一类中的最小序数就是基数,从而成为这类序数的势。

什么是基数和序数

基数怎么解释?

在数学上,基数是集合论中刻画任意集合大小的一个概念。两个能够建立元素间一一对应的集合称为互相对等集合。例如3个人的集合和3匹马的集合可以建立一一对应,是两个对等的集合。序数是集合论基本概念之一,是日常使用的第一、第二等表示次序的数的推广。序数概念是建立在良序集概念之上的,而良序集又是偏序集、全序集的特殊情形。

两者区别

运算规则不同,这些是公理集论的内容,序数的定义一下说不完,你得去看书。简单点说,序数是一种特殊的集,一个非零序数恰包含它前面所有的序数。
最小的序数是空集φ,也记为0。按上述递归定义,下一个序数就是{φ},记为1;再下一个就是{0,1},记为2;再下个就是{0,1,2},记为3;如此下去,先得到所有的有限序数------自然数。然后,按上述定义自然数集N也是序数,这是第一个无穷序数,集论中专用ω来记它。ω的下一个序数是ω+1,通俗地写作{0,1,2,,ω}。

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)
{if $zbp->Config('yd1125')->foot}