百科狗-知识改变命运!

三角函数有哪几种象限符号?

是丫丫呀2年前 (2024-01-03)阅读数 17#车辆
文章标签积分函数

1、三角函数的象限符号见下图

2、记忆与理解

3、知识拓展

在直角三角形中,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。对∠BAC而言,对边(opposite)a=BC、斜边(hypotenuse)c=AB、邻边(adjacent)b=AC,则存在以下关系:

变化规律

正弦值在随角度增大(减小)而增大(减小),在?随角度增大(减小)而减小(增大);

余弦值在随角度增大(减小)而增大(减小),在随角度增大(减小)而减小(增大);

正切值在随角度增大(减小)而增大(减小);余切值在随角度增大(减小)而减小(增大);

正割值在随着角度的增大(或减小)而增大(或减小);余割值在

随着角度的增大(或减小)而减小(或增大)。

重积分

1·二重积分

三角函数有哪几种象限符号?

(1) 二重积分定义

设二元函数定义在有界闭区域上,将区域任意分成个子域,并以表示第个子域的面积。在上任取一点作和。如果当各个子域的直径中的最大值趋于零时,此和式的极限存在,则称此极限为函数在区域上的二重积分,记为,即这时,称在上可积,其中称被积函数,称为被积表达式,称为面积元素,称为积分域,称为二重积分号。

(2) 二重积分的性质

性质1(积分可加性)函数和(差)的二重积分等于各函数二重积分的和(差),即∫∫[f(x,y)±g(x,y)]dσ=∫∫f(x,y)dσ±∫∫g(x,y)dσ

性质2(积分满足数乘)被积函数的常系数因子可以提到积分号外,即∫∫kf(x,y)dσ=k∫∫f(x,y)dσ (k为常数)

性质1与性质2合称为积分的线性性。

性质3 如果在区域D上有f(x,y)≦g(x,y),则∫∫f(x,y)dσ≦∫∫g(x,y)dσ推论∣∫∫f(x,y)dσ∣≦∫∫∣g(x,y)∣dσ

性质4设M和m分别是函数f(x,y)在有界闭区间D上的最大值和最小值,σ为区域D的面积,则mσ≦∫∫f(x,y)dσ≦Mσ

性质5如果在有界闭区域D上f(x,y)=1, σ为D的面积,则Sσ=∫∫dσ重积分

1·二重积分

(1) 二重积分定义

设二元函数定义在有界闭区域上,将区域任意分成个子域,并以表示第个子域的面积。在上任取一点作和。如果当各个子域的直径中的最大值趋于零时,此和式的极限存在,则称此极限为函数在区域上的二重积分,记为,即这时,称在上可积,其中称被积函数,称为被积表达式,称为面积元素,称为积分域,称为二重积分号。

(2) 二重积分的性质

性质1(积分可加性)函数和(差)的二重积分等于各函数二重积分的和(差),即∫∫[f(x,y)±g(x,y)]dσ=∫∫f(x,y)dσ±∫∫g(x,y)dσ

性质2(积分满足数乘)被积函数的常系数因子可以提到积分号外,即∫∫kf(x,y)dσ=k∫∫f(x,y)dσ (k为常数)

性质1与性质2合称为积分的线性性。

性质3 如果在区域D上有f(x,y)≦g(x,y),则∫∫f(x,y)dσ≦∫∫g(x,y)dσ推论∣∫∫f(x,y)dσ∣≦∫∫∣g(x,y)∣dσ

性质4设M和m分别是函数f(x,y)在有界闭区间D上的最大值和最小值,σ为区域D的面积。

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)
{if $zbp->Config('yd1125')->foot}