复变函数拉普拉斯变化
∫√(x^2-1)dx令x=sect 则 ∫√(x^2-1)dx=∫tantdsect=∫tan^2tsectdt=∫(sec^2t-1)sectdt=∫(sec^3t-sect)dt=tant*sect-∫sec^3tdt即∫(sec^3t-sect)dt=tant*sect-∫sec^3tdt2∫(sec^3t)dt=tant*sect+∫sectdt∫sec^3tdt=1/2tant*sect+1/2ln|sect+tant|+c所以 ∫√(x^2-1)dx=tant*sect-∫sec^3tdt=1/2tant*sect-1/2ln|sect+tant|+c=1/2x√(x^2-1)-1/2ln|x+√(x^2-1)|+c
(sec t dt)的不定积分是In|sect+tant|+C
∫sec t dx=∫cost dt/cost·cost
=∫dsint/(1-sint)1+sint)?
=(In|1+sint|-In|1-sint|)/2 +C?
=In|sect+tant|+C
所以(sec t dt)的不定积分是In|sect+tant|+C
不定积分:
不定积分的积分公式主要有如下几类:含ax+b的积分、含√(a+bx)的积分、含有x^2±α^2的积分、含有ax^2+b(a>0)的积分、含有√(a?+x^2) (a>0)的积分、含有√(a^2-x^2) (a>0)的积分、含有√(|a|x^2+bx+c) (a≠0)的积分。
含有三角函数的积分、含有反三角函数的积分、含有指数函数的积分、含有对数函数的积分、含有双曲函数的积分。